$f'(t)$ | $=$ | $u'(t)v(t)+u(t)v'(t)$ |
$=$ | $3\text{e}^{-0,5t+1}+3t\times(-0,5)\text{e}^{-0,5t+1}$ | |
$=$ | $3\text{e}^{-0,5t+1}\left(1-0,5t\right)$ | |
$=$ | $3\text{e}^{-0,5t+1}\left(-0,5t+1\right)$. |
$-0,5t+1$ | $\geq$ | $0$ | ||
ssi | $-0,5t$ | $\geq$ | $-1$ | |
ssi | $t$ | $\leq$ | $\dfrac{-1}{-0,5}$ | car $-0,5<0$ |
ssi | $t$ | $\leq$ | $2$. |
$1$ | $<$ | $\alpha$ | $<$ | $2$ |
$1$ | $<$ | $\alpha$ | $<$ | $1,1$ |
$1,02$ | $<$ | $\alpha$ | $<$ | $1,03$. |
$1,022$ | $<$ | $\alpha$ | $<$ | $1,023$. |
$u_n$ | $\leq$ | $u_{n+1}$ | $<$ | $6$ | ||
ssi | $0,7u_n$ | $\leq$ | $0,7u_{n+1}$ | $<$ | $0,7\times6$ | car $0,7>0$ |
ssi | $0,7u_n+1,8$ | $\leq$ | $0,7u_{n+1}+1,8$ | $<$ | $0,42+1,8$ | |
ssi | $u_{n+1}$ | $\leq$ | $u_{n+2}$ | $<$ | $0,6$. |
$\ell$ | $=$ | $f(\ell)$ |
$\ell$ | $=$ | $0,7\ell+1,8$ |
$\ell-0,7\ell$ | $=$ | $1,8$ |
$0,3\ell$ | $=$ | $1,8$ |
$\ell$ | $=$ | $\dfrac{1,8}{0,3}$ |
$\ell$ | $=$ | $6$. |
$v_{n+1}$ | $=$ | $6-u_{n+1}$ |
$=$ | $6-(0,7u_n+1,8)$ | |
$=$ | $6-0,7u_n-1,8$ | |
$=$ | $4,2-0,7u_n$ | |
$=$ | $0,7\left(\dfrac{4,2}{0,7}-u_n\right)$ | |
$=$ | $0,7\left(6-u_n\right)$ | |
$=$ | $0,7v_n$. |
$u_n$ | $\geq$ | $5,5$ | ||
ssi | $6-4\times0,7^n$ | $\geq$ | $5,5$ | |
ssi | $-4\times0,7^n$ | $\geq$ | $5,5-6$ | |
ssi | $-4\times0,7^n$ | $\geq$ | $-0,5$ | |
ssi | $0,7^n$ | $\leq$ | $\dfrac{-0,5}{-4}$ | car $-4<0$ |
ssi | $0,7^n$ | $\leq$ | $0,125$ | |
ssi | $\ln\left(0,7^n\right)$ | $\leq$ | $\ln(0,125)$ | car $\ln$ est strictement croissante sur $]0\,;+\infty[$ |
ssi | $n\ln\left(0,7\right)$ | $\leq$ | $\ln(0,125)$ | |
ssi | $n$ | $\geq$ | $\dfrac{\ln(0,125)}{\ln\left(0,7\right)}$ | car $\ln\left(0,7\right)<0$. |
$2(1+2t)-(2-t)+2(2+2t)-3$ | $=$ | $0$ |
$9t+1$ | $=$ | $0$ |
$t$ | $=$ | $-\dfrac{1}{9}$. |
$AH^2$ | $=$ | $(x_H-x_A)^2+(y_H-y_A)^2+(z_H-z_A)^2$ |
$=$ | $\left(\dfrac{7}{9}+1\right)^2+\left(\dfrac{19}{9}-1\right)^2+\left(\dfrac{16}{9}-3\right)^2$ | |
$=$ | $\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(-\dfrac{11}{9}\right)^2$ | |
$=$ | $\dfrac{256}{81}+\dfrac{100}{81}+\dfrac{121}{81}$ | |
$=$ | $\dfrac{477}{81}$. |
$\overrightarrow{AB}\cdot\vec{u}$ | $=$ | $(\overrightarrow{AH}+\overrightarrow{HB})\cdot\vec{u}$ | |
$\overrightarrow{AB}\cdot\vec{u}$ | $=$ | $\overrightarrow{AH}\cdot\vec{u}+\overrightarrow{HB}\cdot\vec{u}$ | |
$\overrightarrow{AB}\cdot\vec{u}$ | $=$ | $0+\overrightarrow{HB}\cdot\vec{u}$ | car $\mathscr{D}$ est orthgonale à $\mathscr{P}$ |
$\overrightarrow{AB}\cdot\vec{u}$ | $=$ | $k \vec{u}\cdot\vec{u}$ | car $\overrightarrow{HB} = k \vec{u}$ |
$\overrightarrow{AB}\cdot\vec{u}$ | $=$ | $k ||\vec{u}||^2$ | |
$\dfrac{\overrightarrow{AB}\cdot\vec{u}}{||\vec{u}||^2}$ | $=$ | $k $. |
$\overrightarrow{HB}$ | $=$ | $k\vec{u}$ |
$\begin{pmatrix}x_B-x_H \\ y_B-y_H \\ z_B-z_H \end{pmatrix}$ | $=$ | $-\dfrac{8}{9}\begin{pmatrix}2 \\ -1 \\ 2 \end{pmatrix}$ |
$\begin{pmatrix}-1-x_H \\ 3-y_H \\ -z_H \end{pmatrix}$ | $=$ | $\begin{pmatrix}-\dfrac{16}{9} \\ \dfrac{8}{9} \\ -\dfrac{16}{9} \end{pmatrix}$ |
$V_{ABCH}$ | $=$ | $\dfrac{1}{3}A_{ACH}\times BH$ |
$\dfrac{8}{9}$ | $=$ | $\dfrac{1}{3}A_{ACH}\times BH$ |
$A_{ACH}$ | $=$ | $\dfrac{3\times \dfrac{8}{9}}{BH}$ |
$A_{ACH}$ | $=$ | $\dfrac{\dfrac{8}{3}}{BH}$ |
$A_{ACH}$ | $=$ | $\dfrac{8}{3BH}$. |
$BH^2$ | $=$ | $(x_H-x_B)^2+(y_H-y_B)^2+(z_H-z_B)^2$ |
$=$ | $\left(\dfrac{7}{9}+1\right)^2+\left(\dfrac{19}{9}-3\right)^2+\left(\dfrac{16}{9}\right)^2$ | |
$=$ | $\left(\dfrac{16}{9}\right)^2+\left(-\dfrac{8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2$ | |
$=$ | $\dfrac{256}{81}+\dfrac{64}{81}+\dfrac{256}{81}$ | |
$=$ | $\dfrac{576}{81}$. |
$P(F\cap S)+P(\overline{F}\cap S)$ | $=$ | $P(S)$ |
$0,208+P(\overline{F}\cap S)$ | $=$ | $0,25$ |
$P(\overline{F}\cap S)$ | $=$ | $0,25-0,208$ |
$P(\overline{F}\cap S)$ | $=$ | $0,042$. |
$\text{e}^{2x}+\text{e}^x-12$ | $=$ | $0$ |
$\left(\text{e}^{x}\right)^2+\text{e}^x-12$ | $=$ | $0$ |
$X^2+X-12$ | $=$ | $0$. |