-->
| $t^2+(y-1)^2$ | $=$ | $1$ |
| $(y-1)^2$ | $=$ | $1-t^2$ |
| $y-1$ | $=$ | $\pm \sqrt{1-t^2}$ |
| $y$ | $=$ | $1\pm \sqrt{1-t^2}$. |
| $P_t(2t)$ | $=$ | $0$ | |
| $a(t)(2t)^2+b(t)2t$ | $=$ | $0$ | |
| $4t^2a(t)+2tb(t)$ | $=$ | $0$ | |
| $2tb(t)$ | $=$ | $-4t^2a(t)$ | |
| $b(t)$ | $=$ | $\dfrac{-4t^2a(t)}{2t}$ | car $t\neq0$ |
| $b(t)$ | $=$ | $-2ta(t)$. |
| $P_t(t)$ | $=$ | $1+\sqrt{1-t^2}$ | |
| $a(t)t^2+b(t)t$ | $=$ | $1+\sqrt{1-t^2}$ | |
| $a(t)t^2-2ta(t)t$ | $=$ | $1+\sqrt{1-t^2}$ | car $b(t)=-2ta(t)$ |
| $a(t)t^2-2a(t)t^2$ | $=$ | $1+\sqrt{1-t^2}$ | |
| $-a(t)t^2$ | $=$ | $1+\sqrt{1-t^2}$ | |
| $a(t)$ | $=$ | $-\dfrac{1+\sqrt{1-t^2}}{t^2}$ | car $t\neq0$. |
| $b(t)$ | $=$ | $-2ta(t)$ |
| $=$ | $-2t\times\left(-\dfrac{1+\sqrt{1-t^2}}{t^2}\right)$ | |
| $=$ | $2\times\dfrac{1+\sqrt{1-t^2}}{t}$. |
| $P'_t(x)$ | $=$ | $\left(2-\dfrac{1}{2}x^2\right)'$ |
| $\left( a(t)x^2-2ta(t)x \right)'$ | $=$ | $-x$ |
| $2a(t)x-2ta(t)$ | $=$ | $-x$ |
| $2a(t)x+x$ | $=$ | $2ta(t)$ |
| $(2a(t)+1)x$ | $=$ | $2ta(t)$ |
| $x$ | $=$ | $\dfrac{2ta(t)}{2a(t)+1}$. |