$\begin{pmatrix} mx''(t) \\ my''(t) \end{pmatrix}$
|
$=$
|
$ \begin{pmatrix} 0 \\ -g \end{pmatrix}$
|
$\begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix}$
|
$=$
|
$ \begin{pmatrix} 0 \\ -\dfrac{g}{m} \end{pmatrix}$
|
$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}$
|
$=$
|
$ \begin{pmatrix} x_{\overrightarrow{v_0}} \\ -\dfrac{g}{m}t+y_{\overrightarrow{v_0}} \end{pmatrix}$
|
$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$
|
$=$
|
$ \begin{pmatrix} x_{\overrightarrow{v_0}}t+x(0) \\ -\dfrac{g}{2m}t^2+y_{\overrightarrow{v_0}}t+y(0) \end{pmatrix}$
|
$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$
|
$=$
|
$ \begin{pmatrix} x_{\overrightarrow{v_0}}t \\ -\dfrac{g}{2m}t^2+y_{\overrightarrow{v_0}}t+h \end{pmatrix}$
|