-->
$y$ | $=$ | $f'(a)(x-a)+f(a)$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $f'(a)(x-a)+f(a)$ |
$\Longleftrightarrow$ | $y$ | $=$ | $2a(x-a)+a^2$ |
$\Longleftrightarrow$ | $y$ | $=$ | $2ax-2a^2+a^2$ |
$\Longleftrightarrow$ | $y$ | $=$ | $2ax-a^2$. |
$y_A$ | $=$ | $-\dfrac{1}{2a}x_A+k$ |
$a^2$ | $=$ | $-\dfrac{1}{2a}a+k$ |
$a^2$ | $=$ | $-\dfrac{1}{2}+k$ |
$a^2+\dfrac{1}{2}$ | $=$ | $k$ |
$(x-a)\times2a$ | $=$ | $y\times1$ | ||
$\Longleftrightarrow$ | $2ax-2a^2$ | $=$ | $y$. | (1) |
$\dfrac{y}{2}$ | $=$ | $-\dfrac{1}{2a}\times\dfrac{a+x}{2}+a^2+\dfrac{1}{2}$ | ||
$\Longleftrightarrow$ | $\dfrac{y}{2}$ | $=$ | $-\dfrac{a+x}{4a}+a^2+\dfrac{1}{2}$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $-\dfrac{a+x}{2a}+2a^2+1$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $-\dfrac{a}{2a}-\dfrac{x}{2a}+2a^2+1$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $-\dfrac{1}{2}-\dfrac{x}{2a}+2a^2+1$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $-\dfrac{x}{2a}+2a^2+\dfrac{1}{2}$ | |
$\Longleftrightarrow$ | $y$ | $=$ | $-\dfrac{1}{2a}x+2a^2+\dfrac{1}{2}$. | (2) |
$2ax-2a^2$ | $=$ | $-\dfrac{1}{2a}x+2a^2+\dfrac{1}{2}$ | ||
$\Longleftrightarrow$ | $4a^2x-4a^3$ | $=$ | $-x+4a^3+a$ | en multipliant par $2a$ |
$\Longleftrightarrow$ | $4a^2x+x$ | $=$ | $4a^3+a+4a^3$ | |
$\Longleftrightarrow$ | $(4a^2+1)x$ | $=$ | $8a^3+a$ | |
$\Longleftrightarrow$ | $(4a^2+1)x$ | $=$ | $a(8a^2+1)$ | |
$\Longleftrightarrow$ | $x$ | $=$ | $\dfrac{a(8a^2+1)}{4a^2+1}$. |
$y$ | $=$ | $2a\times\dfrac{a(8a^2+1)}{4a^2+1}-2a^2$ |
$=$ | $\dfrac{2a^2(8a^2+1)}{4a^2+1}-2a^2$ | |
$=$ | $2a^2\left(\dfrac{8a^2+1}{4a^2+1}-1\right)$ | |
$=$ | $2a^2\left(\dfrac{8a^2+1}{4a^2+1}-\dfrac{4a^2+1}{4a^2+1}\right)$ | |
$=$ | $2a^2\left(\dfrac{4a^2}{4a^2+1}\right)$ | |
$=$ | $\dfrac{8a^4}{4a^2+1}$. |
$\dfrac{y_{A'_0}-y_A}{x_{A'_0}-x_A}$ | $=$ | $\dfrac{ \dfrac{8a^4}{4a^2+1}-a^2 }{ \dfrac{a(8a^2+1)}{4a^2+1}-a }$ |
$=$ | $\dfrac{ \dfrac{8a^4}{4a^2+1}-\dfrac{a^2(4a^2+1)}{4a^2+1} }{ \dfrac{a(8a^2+1)}{4a^2+1}-\dfrac{a(4a^2+1)}{4a^2+1} }$ | |
$=$ | $\dfrac{ \dfrac{8a^4-a^2}{4a^2+1} }{ \dfrac{a(8a^2+1)-a}{4a^2+1} }$ | |
$=$ | $\dfrac{ 8a^4-a^2 }{ a(8a^2+1)-a }$ | |
$=$ | $\dfrac{ a^2(8a^2-1) }{ a(8a^2+1-1) }$ | |
$=$ | $\dfrac{ a^2(8a^2-1) }{ 8a^3 }$ | |
$=$ | $\dfrac{ 8a^2-1 }{ 8a }$ |
$y_A$ | $=$ | $\dfrac{ 8a^2-1 }{ 8a }x_A+k$ | |
$\Longleftrightarrow$ | $a^2$ | $=$ | $\dfrac{ 8a^2-1 }{ 8a }\times a+k$ |
$\Longleftrightarrow$ | $a^2$ | $=$ | $\dfrac{ 8a^2-1 }{ 8 }+k$ |
$\Longleftrightarrow$ | $k$ | $=$ | $a^2-\dfrac{ 8a^2-1 }{ 8 }$. |
$\Longleftrightarrow$ | $k$ | $=$ | $a^2-\dfrac{ 8a^2}{8}+\dfrac{1 }{ 8 }$. |
$\Longleftrightarrow$ | $k$ | $=$ | $a^2-a^2+\dfrac{1 }{ 8 }$. |
$\Longleftrightarrow$ | $k$ | $=$ | $\dfrac{1 }{ 8 }$. |