-->
$\ell$ | $=$ | $\sqrt{ (1-\cos(\theta))^2+(0-\sin(\theta))^2 }$ |
$=$ | $\sqrt{ 1-2\cos(\theta)+\cos^2(\theta)+\sin(\theta)^2 }$ | |
$=$ | $\sqrt{ 1-2\cos(\theta)+1 }$ | |
$=$ | $\sqrt{ 2-2\cos(\theta) }$ | |
$=$ | $\sqrt{ 2(1-\cos(\theta)) }$. |
$\sqrt{ 2(1-\cos(\theta)) }$ | $=$ | $\ell$ |
$ 2(1-\cos(\theta)) $ | $=$ | $\ell^2$ |
$ 1-\cos(\theta) $ | $=$ | $\dfrac{\ell^2}{2}$ |
$ -\cos(\theta) $ | $=$ | $\dfrac{\ell^2}{2}-1$ |
$ \cos(\theta) $ | $=$ | $1-\dfrac{\ell^2}{2}$ |
$ \theta $ | $=$ | $\arccos\left(1-\dfrac{\ell^2}{2}\right)$. |
$P(X\leq\sqrt{3})$ | $=$ | $\dfrac{1}{\pi}\arccos\left(1-\dfrac{(\sqrt{3})^2}{2}\right)$ |
$=$ | $\dfrac{1}{\pi}\arccos\left(1-\dfrac{(\sqrt{3})^2}{2}\right)$ | |
$=$ | $\dfrac{1}{\pi}\arccos\left(1-\dfrac{3}{2}\right)$ | |
$=$ | $\dfrac{1}{\pi}\arccos\left(-\dfrac{1}{2}\right)$ | |
$=$ | $\dfrac{1}{\pi}\times\dfrac{2\pi}{3}$ | |
$=$ | $\dfrac{2}{3}$. |
$P(X\in[a\,;b])$ | $=$ | $F(b)-F(b)$ |
$=$ | $\dfrac{1}{\pi}\arccos\left(1-\dfrac{b^2}{2}\right)-\dfrac{1}{\pi}\arccos\left(1-\dfrac{a^2}{2}\right)$ | |
$=$ | $\dfrac{1}{\pi}\left(\arccos\left(1-\dfrac{b^2}{2}\right)-\arccos\left(1-\dfrac{a^2}{2}\right)\right)$. |
$f_d(x)$ | $= F'(x)$ |
> | $= \left( \dfrac{1}{\pi}\arccos\left(1-\dfrac{x^2}{2}\right) \right)'$ |
$= \dfrac{1}{\pi}\dfrac{-(-x)}{\sqrt{1-\left(\frac{x^2}{2}\right)^2}}$ | |
$= \dfrac{1}{\pi}\dfrac{x}{\sqrt{1-\frac{x^4}{4}}}$. |