$I_n$
|
$=$
|
$\displaystyle{\int_0^{\pi/2}\cos^{2n}(x)\text{d}x}$
|
|
|
$u(x)=\cos^{2n-1}(x)$ |
$u'(x)=-(2n-1)\sin(x)\cos^{2n-2}(x)$
|
$v'(x)=\cos(x)$ |
$v(x)=\sin(x)$ |
|
$$
|
$=$
|
$\displaystyle{\left[ \sin(x)\cos^{2n-1}(x) \right]_0^{\pi/2}-\int_0^{\pi/2} (-(2n-1)\sin(x)\cos^{2n-2}(x))\sin(x) \text{d}x}$
|
$$
|
$=$
|
$\displaystyle{0-0+(2n-1)\int_0^{\pi/2} \sin^2(x)\cos^{2n-2}(x)\text{d}x}$
|
|
$=$
|
$\displaystyle{(2n-1)\int_0^{\pi/2} (1-\cos^2(x))\cos^{2n-2}(x)\text{d}x}$
|
|
$=$
|
$\displaystyle{(2n-1)\int_0^{\pi/2} \left( \cos^{2n-2}(x)-\cos^{2n}(x) \right)\text{d}x}$
|
|
$=$
|
$\displaystyle{(2n-1)\left(\int_0^{\pi/2} \cos^{2n-2}(x)\text{d}x-\int_0^{\pi/2}\cos^{2n}(x) \text{d}x\right)}$
|
|
$=$
|
$\displaystyle{(2n-1)\left(\int_0^{\pi/2} \cos^{2(n-1)}(x)\text{d}x-\int_0^{\pi/2}\cos^{2n}(x) \text{d}x\right)}$
|
|
$=$
|
$\displaystyle{(2n-1)\left(I_{n-1}-I_n\right)}$
|
|
$=$
|
$\displaystyle{(2n-1)I_{n-1}-(2n-1)I_n}$.
|
$I_n$
|
$=$
|
$\displaystyle{\int_0^{\pi/2}\cos^{2n}(x)\text{d}x}$
|
|
|
$u(x)=\cos^{2n}(x)$ |
$u'(x)=-2n\sin(x)\cos^{2n-1}(x)$
|
$v'(x)=1$ |
$v(x)=x$ |
|
|
$=$
|
$\displaystyle{\left[ x\cos^{2n}(x) \right]_0^{\pi/2}+2n\int_0^{\pi/2}x\sin(x)\cos^{2n-1}(x)\text{d}x}$
|
|
$=$
|
$\displaystyle{0+2n\int_0^{\pi/2}x\sin(x)\cos^{2n-1}(x)\text{d}x}$
|
|
|
$u(x)=\sin(x)\cos^{2n-1}(x)$ |
$u'(x)=\cos^{2n}(x)-(2n-1)\sin^2(x)\cos^{2n-2}(x)$
|
$v'(x)=x$ |
$v(x)=\dfrac{1}{2}x^2$ |
|
|
$=$
|
$\displaystyle{n\left[ x^2\sin(x)\cos^{2n-1}(x) \right]_0^{\pi/2}-n\int_0^{\pi/2}x^2\left(\cos^{2n}(x)-(2n-1)\sin^2(x)\cos^{2n-2}(x)\right)\text{d}x}$
|
|
$=$
|
$\displaystyle{0-n\int_0^{\pi/2}x^2\cos^{2n}(x)\text{d}x+n(2n-1)\int_0^{\pi/2}x^2(1-\cos^2(x))\cos^{2n-2}(x)\text{d}x}$
|
|
$=$
|
$-nJ_n+n(2n-1)J_{n-1}-n(2n-1)J_n$
|
|
$=$
|
$-nJ_n(-1-2n+1)+n(2n-1)J_{n-1}$
|
|
$=$
|
$-2n^2J_n+n(2n-1)J_{n-1}$.
|
$J_n$
|
$=$
|
$\displaystyle{\int_0^{\pi/2}x^2\cos^{2n}(x)\text{d}x}$
|
|
$\leq$
|
$\displaystyle{\int_0^{\pi/2}\dfrac{\pi}{2}\sin(x)x\cos^{2n}(x)\text{d}x}$
|
En appliquant la propriété 3 à l'un des deux $x$ de $x^2$
|
|
$\leq$
|
$\displaystyle{\int_0^{\pi/2}\dfrac{\pi^2}{4}\sin^2(x)\cos^{2n}(x)\text{d}x}$
|
En appliquant la propriété 3 au deuxième $x$ qui reste
|
|
$\leq$
|
$\displaystyle{\dfrac{\pi^2}{4}\int_0^{\pi/2}\left(1-\cos^2(x)\right)\cos^{2n}(x)\text{d}x}$
|
|
|
$\leq$
|
$\displaystyle{ \dfrac{\pi^2}{4}\left( \int_0^{\pi/2}\cos^{2n}(x)\text{d}x-\int_0^{\pi/2}\cos^{2n+2}(x)\text{d}x\right)}$
|
|
|
$\leq$
|
$\displaystyle{ \dfrac{\pi^2}{4}\left( \int_0^{\pi/2}\cos^{2n}(x)\text{d}x-\int_0^{\pi/2}\cos^{2(n+1)}(x)\text{d}x\right)}$
|
|
|
$\leq$
|
$\dfrac{\pi^2}{4}\left( I_n-I_{n+1} \right)$
|
|
|
$\leq$
|
$\dfrac{\pi^2}{4}\left( I_n-\dfrac{2n+1}{2n+2}I_n \right)$
|
d'après la relation démontrée dans les calculs de la propriété 1
|
|
$\leq$
|
$\dfrac{\pi^2}{4}\times\dfrac{I_n}{2n+2}$
|
|
|
$\leq$
|
$\dfrac{\pi^2 I_n}{8(n+1)}.$
|
|