Fonctions affines

1 Fonctions affines

Définition 1

Une fonction f définie sur

est dite

lorsqu'il existe deux réels a et b tels que, pour tout

Les nombres a et b sont respectivement appelés

Remarque 1

Dans le cas particulier où

la fonction est dite

Dans le cas où

la fonction est dite

Exemple 1

La fonction g définie pour tout réel x par g(x)=3x-11 est une fonction

Son ordonnée à l'origine vaut

et son

coefficient directeur

On peut remplir le tableau de valeurs ci-dessous pour cette fonction :

x	-10	-1	0	0,5	$\frac{11}{3}$	111
g(x)=3x-11						

Propriété 1

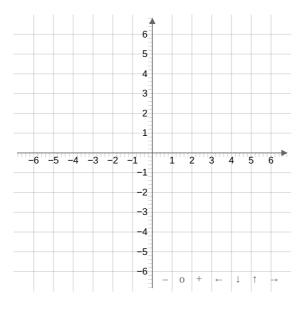
Dans un repère orthonormé du plan, la courbe représentative d'une fonction affine est

Exercice 1

Dans le repère ci-dessous, construire les courbes représentatives des deux fonctions affines f et g définies pour tout réel x par :

$$f(x)=\,\frac{1}{2}\,x-3$$

$$g(x) = -x + 1$$



Correction

Pour la fonction f:

On a

Donc la droite passe par le point

De plus,

Donc la droite passe également par le point

Pour la fonction g:

On a

Donc la droite passe par le point

De plus,

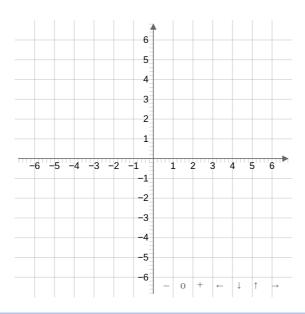
Donc la droite passe également par le point

Propriété 2

Deux fonctions affines ont des représentations graphiques

si et seulement si elles ont

Illustration

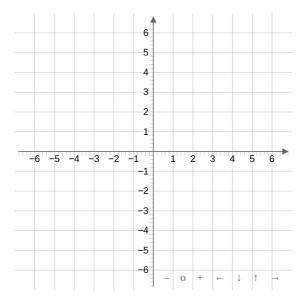


Propriété 3

Soit f une fonction affine dont le coefficient directeur est noté a.

- ullet Si alors f est
- ullet Si alors f est

Illustration



Propriété 4

Soient a et b deux réels,

et soit f la fonction affine définie pour tout $x \in \mathbb{R}$ par

Preuve

Résolvons l'équation

Propriété 5

Soient a et b deux réels,

et soit f la fonction affine définie pour tout $x \in \mathbb{R}$ par

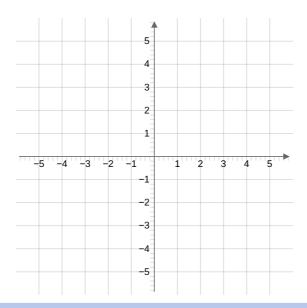
• Si

alors:

• Si

alors:

Illustration



Exercice 2

Soit h la fonction affine définie sur $\mathbb R$ par h(t)=3t-5. Déterminer le tableau de signe de h sur $\mathbb R$.

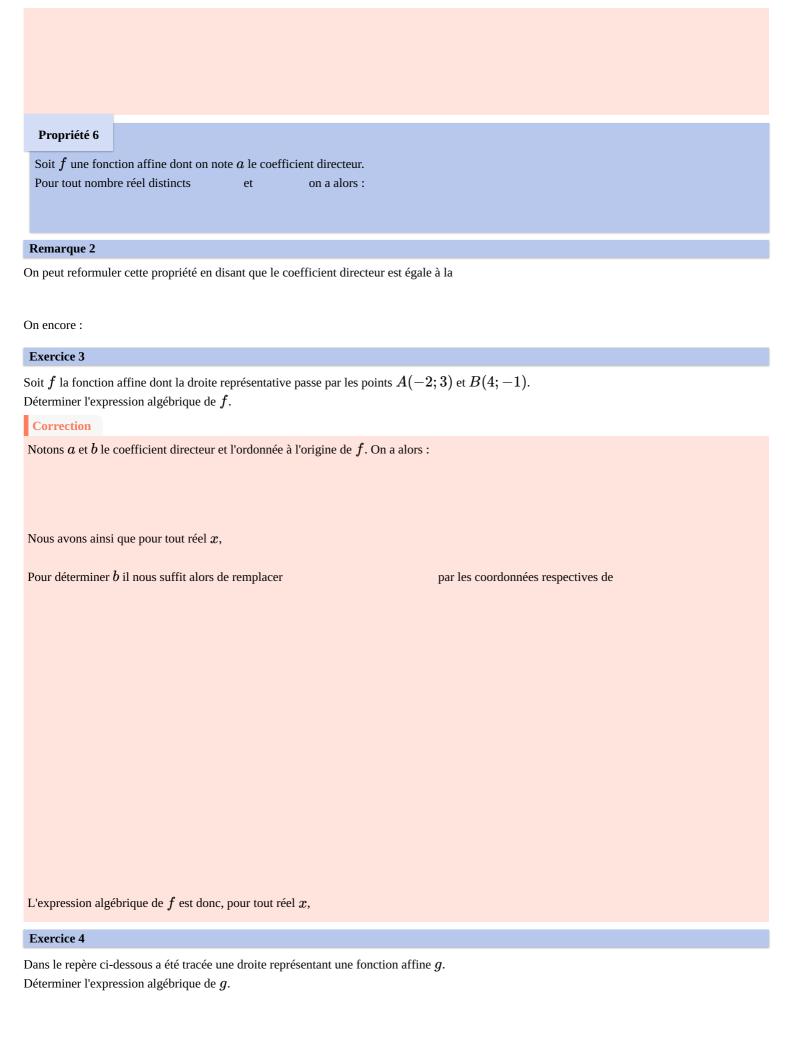
Correction

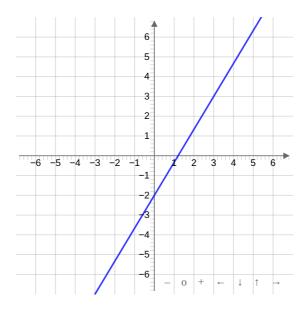
Résolvons tout d'abord

Ainsi, puisque le coefficient directeur de \boldsymbol{g} vaut

qui est un nombre

nous avons le tableau de signes suivant :





Correction

Nous voyons que la droite passe par le point de coordonnées

ainsi l'ordonnée à l'origine vaut

La droite passe également par le point

le coefficient directeur vaut donc :

L'expression algébrique de g est donc pour tout réel x :

2 Intersections de droites ~ Positions relatives

Propriété 7

Soient f et g deux fonctions affines.

Pour déterminer l'éventuel

entre les deux droites représentatives de ces deux fonctions, on

Si il existe une solution

le point d'intersection à alors pour coordonnées

Exercice 5

Soient f et g les deux fonctions affines définies pour tout réel x par $f(x)=rac{1}{2}x+5$ et g(x)=-2x-3.

Déterminer les coordonnées de l'éventuel point d'intersection entre les droites représentatives de ces deux fonctions.

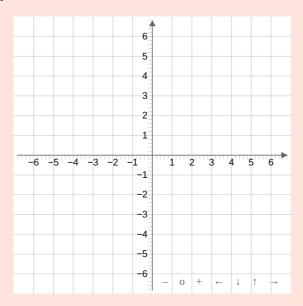
Correction

Résolvons pour cela l'équation

Il nous reste à calculer

Le point d'intersection cherché a donc pour coordonnées :

On peut vérifier ce résultat dans un graphique.



Propriété 8

Soient f et g deux fonctions affines.

Pour déterminer la

des deux droites représentatives de ces deux fonctions, on résout

Exercice 6

Soient f et g les deux fonctions affines définies pour tout réel x par f(x) = x - 1 et g(x) = -2x + 1. Déterminer la position relative des droites représentatives de ces deux fonctions.

Correction

Résolvons tout d'abord l'inéquation

Ainsi, pour tout réel la droite représentant la fonction f est de celle représentant la fonction g.

Pour tout réel la droite représentant la fonction f est de celle représentant la fonction g.

En notant les droites représentant les fonctions f et g, on peut établir le tableau suivant :

On peut vérifier ce résultat dans un graphique.

