$\mathbb{N}$ | $\mathbb{Z}$ | $\mathbb{D}$ | $\mathbb{Q}$ | $\mathbb{R}$ | |
$\dfrac{1}{7}$ | ✗ | ✗ | |||
$-2,9$ | |||||
$\dfrac{2}{\pi}$ | |||||
$\dfrac{51}{27}$ | |||||
$-\sqrt{81}$ | |||||
$\dfrac{\sqrt{32}}{\sqrt{8}}$ | |||||
$-3\times\dfrac{8}{15}$ |
$\mathbb{N}$ | $\mathbb{Z}$ | $\mathbb{D}$ | $\mathbb{Q}$ | $\mathbb{R}$ | |
$\dfrac{1}{7}$ | ✗ | ✗ | |||
$-2,9$ | ✗ | ✗ | ✗ | ||
$\dfrac{2}{\pi}$ | ✗ | ||||
$\dfrac{51}{27}$ | ✗ | ✗ | |||
$-\sqrt{81}$ | ✗ | ✗ | ✗ | ✗ | |
$\dfrac{\sqrt{32}}{\sqrt{8}}$ | ✗ | ✗ | ✗ | ✗ | ✗ |
$-3\times\dfrac{8}{15}$ | ✗ | ✗ | ✗ |
$g(0)$ | $=$ | $-1$ |
$\dfrac{2}{3}\times0+b$ | $=$ | $-1$ |
$b$ | $=$ | $-1$. |
$x$ | $0$ | $6$ |
$f(x)=-\dfrac{1}{3}x+2$ | $2$ | $0$ |
$x$ | $0$ | $6$ |
$g(x)=\dfrac{2}{3}x-1$ | $-1$ | $3$ |
$f(x)$ | $=$ | $g(x)$ |
$-\dfrac{1}{3}x+2$ | $=$ | $\dfrac{2}{3}x-1$ |
$-\dfrac{1}{3}x-\dfrac{2}{3}x$ | $=$ | $-1-2$ |
$-\dfrac{3}{3}x$ | $=$ | $-3$ |
$-x$ | $=$ | $-3$ |
$x$ | $=$ | $3$. |
$(6-x)^2$ | $=$ | $6^2-2\times 6 \times x +x^2$ |
$=$ | $36 - 12x +x^2$ | |
$=$ | $x^2- 12x +36$. |
$(x+7)(4-x)$ | $=$ | $x\times 4 -x\times x +7\times 4 -7\times x$ |
$=$ | $4x -x^2 +28 -7x$ | |
$=$ | $-x^2 -3x+28$. |
$(x-3)(x+3)-(x+5)^2$ | $=$ | $x^2-3^2-(x^2+10x+25)$ |
$=$ | $x^2-9-x^2-10x-25$ | |
$=$ | $-10x-34$. |
$(2x+5)(4-3x)+3(x+7)$ | $=$ | $8x-6x^2+20-15x+3x+21$ |
$=$ | $-6x^2-4x+41$. |
$11x-39$ | $=$ | $0$ |
$11x$ | $=$ | $39$ |
$x$ | $=$ | $\dfrac{39}{11}$. |
$x+4$ | $=$ | $3x-9$ |
$x-3x$ | $=$ | $-4-9$ |
$-2x$ | $=$ | $-13$ |
$x$ | $=$ | $\dfrac{-13}{-2}$ |
$x$ | $=$ | $\dfrac{13}{2}$. |
$\dfrac{2}{3}x+7$ | $=$ | $\dfrac{1}{2}$ |
$\dfrac{2}{3}x$ | $=$ | $\dfrac{1}{2}-7$ |
$\dfrac{2}{3}x$ | $=$ | $\dfrac{1}{2}-\dfrac{14}{2}$ |
$\dfrac{2}{3}x$ | $=$ | $-\dfrac{13}{2}$ |
$x$ | $=$ | $-\dfrac{13}{2}\times\dfrac{3}{2}$ |
$x$ | $=$ | $-\dfrac{39}{4}$. |
$OD^2$ | $=$ | $(x_D-x_O)^2+(y_D-y_O)^2$ |
$=$ | $(-1-0)^2+(2-0)^2$ | |
$=$ | $(-1)^2+2^2$ | |
$=$ | $1+4$ | |
$=$ | $5$. |
$DB^2$ | $=$ | $(x_B-x_D)^2+(y_B-y_D)^2$ |
$=$ | $(2-(-1))^2+(1-2)^2$ | |
$=$ | $3^2+(-1)^2$ | |
$=$ | $9+1$ | |
$=$ | $10$. |
$OB^2$ | $=$ | $(x_B-x_O)^2+(y_B-y_O)^2$ |
$=$ | $(2-0)^2+(1-0)^2$ | |
$=$ | $2^2+1^2$ | |
$=$ | $5$. |
$x_M$ | $=$ | $\dfrac{x_O+x_P}{2}$ |
$\dfrac{1}{2}$ | $=$ | $\dfrac{0+x_P}{2}$ |
$\dfrac{1}{2}$ | $=$ | $\dfrac{x_P}{2}$ |
$1$ | $=$ | $x_P$ |
$x_P$ | $=$ | $1$. |
$y_M$ | $=$ | $\dfrac{y_O+y_P}{2}$ |
$\dfrac{3}{2}$ | $=$ | $\dfrac{0+y_P}{2}$ |
$\dfrac{3}{2}$ | $=$ | $\dfrac{y_P}{2}$ |
$3$ | $=$ | $y_P$ |
$y_P$ | $=$ | $3$. |