Vecteurs du plan (2)

Exercice 1

Dans un repère du plan, on donne les points : A(1;-2), B(-1;3) et C(4;6).

Calculer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{BA} , \overrightarrow{AC} et \overrightarrow{BC} .

Exercice 2

Dans un repère du plan, on donne $\vec{u}(2;3)$ et A(-1;4). Déterminer les coordonnées du point B tel que $\overrightarrow{AB}=\vec{u}$.

Exercice 3

Dans un repère orthonormé du plan, on considère les points A(1;2), B(-1;-1) et C(5;4).

- 1. Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 2. En déduire alors les coordonnées du point M tel que $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC}$.
- 3. Déterminer les coordonnées du point I milieu de [BC], puis du point J milieu de [AM]. Que peut-on déduire de ces résultats ?
- 4. Calculer BC et AM.

Exercice 4

Dans un repère du plan, on considère les points : A(-5;1), B(-1;3), C(5;1) et D(1;-1).

- 1. Faire une figure.
- 2. Quelle est la nature du quadrilatère ABCD ? Justifier votre réponse.
- 3. Quelles sont les coordonnés du point d'intersection des diagonales [AC] et [BD] ?

Exercice 5

Soient M(5;12), N(-3;0), R(-4;-5) et S(2;4) quatre points du plan.

- 1. Les vecteurs \overrightarrow{MN} et \overrightarrow{RS} sont-ils colinéaires ?
- 2. Que peut-on en déduire pour les droites (MN) et (RS) ?

Exercice 6

Dans un repère on considère les points A(-2;1), B(3;3), $C\left(1;\frac{11}{5}\right)$ et $D\left(\frac{45}{2};\frac{54}{5}\right)$.

- 1. Démontrer que les points A,B et C sont alignés.
- 2. Les points A, B et D sont-ils alignés ?

Exercice 7

Dans un repère, on considère les points A(0;1), B(5;0), C(0;-4) et D(x;0).

- 1. Déterminer la valeur du réel x pour que les droites (AB) et (CD) soient parallèles.
- 2. Trouver alors le réel λ tel que $\overrightarrow{CD} = \lambda \overrightarrow{AB}$.

Exercice 8

On considère dans un repère du plan le points $R(\sqrt{3};-1)$, les vecteurs $\vec{u}(\sqrt{3};1)$ et $\vec{v}(-\sqrt{3};3)$.

On définit les points S et T par $\overrightarrow{RS} = \vec{u}$ et $\overrightarrow{RT} = \vec{v}$.

On note $\alpha = \widehat{SRT}$.

- 1. Déterminer les coordonnées des points S et T .
- 2. Quelle est la nature du triangle RST ?
- 3. Peut-on déterminer la mesure de lpha ? Si oui combien vaut-elle ?
- 4. Calculer $\cos^2(\alpha) + \sin^2(\alpha)$.
- 5. Ce dernier résultat est-il particulier au triangle RST ?