-->
$AB^2$ | $=$ | $AH^2+HB^2$ |
$=$ | $(x_B-x_A)^2+(y_B-y_A)^2$ |
$MN^2$ | $=$ | $(x_N-x_M)^2+(y_N-y_M)^2$ |
$=$ | $(5-(-1))^2+(-1-3)^2$ | |
$=$ | $6^2+(-4)^2$ | |
$=$ | $36+16$ | |
$=$ | $52$ |
$M$ | $=$ | $\left( \dfrac{x_A+x_B}{2} ; \dfrac{y_A+y_B}{2} \right)$ |
$=$ | $\left( \dfrac{-4+14}{2} ; \dfrac{-10+9}{2} \right)$ | |
$=$ | $\left( \dfrac{10}{2} ; \dfrac{-1}{2} \right)$ | |
$=$ | $\left( 5 ; -\dfrac{1}{2} \right)$. |