
Fonctions affines et orthogonalité

Partie A

soient f et g les deux fonctions affines définies pour tout réel x par :

$$f(x)=2x-4$$
 et $g(x)=-rac{1}{2}x+5$

1. Construire dans le repère ci-dessous les droites d_f et d_g représentant respectivement les fonctions f et g.

- 2. Déterminer les coordonnées des points A,B et C tels que :
 - \circ A soit l'intersection entre d_f et l'axe des abscisses.
 - $\circ \; B$ soit l'intersection entre d_g et l'axe des abscisses.
 - \circ C soit l'intersection entre d_f et d_g .
- 3. Déterminer la nature du triangle ABC, puis calculer son aire.

Partie B

Soient a et b deux nombres réels non nul, et f et g les fonctions définies sur \mathbb{R} par : f(x) = ax et g(x) = bx. On note \mathcal{C}_f et \mathcal{C}_g les représentations graphiques des fonctions f et g dans un repère orthonormé du plan.

- 1. Montrer que le point $O(0\,;0)$ appartient à ${\mathcal C}_f$ et ${\mathcal C}_g$.
- 2. Soient A et B les points d'abscisse 1 respectivement de \mathcal{C}_f et \mathcal{C}_g Déterminer les coordonnées de A et B.
- 3. Montrer que si $b=-rac{1}{a}$ alors OAB est rectangle en O.
- 4. La réciproque de la proposition de la question précédente est-elle vraie ?
- 5. L'affirmation « les droites représentant deux fonctions affines sont perpendiculaires si et seulement si le produit de leurs coefficients directeurs vaut -1 » est-elle vraie ?