| $\left\{\begin{array}{rcl}
1+t & = & 6 - k \
3+t'& = & -4+2k \
4+t+2t' & = & 1+k \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcl}
t+k & = & 5 \
t'-2k & = & -7 \
t+2t'-k & = & -3 \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t+2t'-k & = & -3 & (1) \
t+k & = & 5 & (2) \
t'-2k & = & -7 & (3) \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t+2t'-k & = & -3 & (1) \
t+k & = & 5 & (2) \
t+3k & = & 11 & (1)-2\times(3)=(3') \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t+2t'-k & = & -3 & (1) \
t+k & = & 5 & (2) \
2k & = & 6 & (3')-(2) \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t+2t'-k & = & -3 & \
t+k & = & 5 & \
k & = & 3 & \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t+2t'-k & = & -3 & \
t & = & 2 & \
k & = & 3 & \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
2t' & = & -2 & \
t & = & 2 & \
k & = & 3 & \
\end{array}\right.$ |
$\Longleftrightarrow$ | $\left\{\begin{array}{rcll}
t' & = & -1 & \
t & = & 2 & \
k & = & 3 & \
\end{array}\right.$ |