$\cos^3 x$ | $ = $ | $\left( \dfrac{\text{e}^{ix} + \text{e}^{-ix}}{2} \right)^3$ |
| $ = $ | $ \dfrac{ \left(\text{e}^{ix} + \text{e}^{-ix} \right)^3}{8}$ |
| $ = $ | $\dfrac{1}{8}\left( \text{e}^{3ix} + 3\text{e}^{2ix}\text{e}^{-ix}+3\text{e}^{ix}\text{e}^{-2ix}+\text{e}^{-3ix}\right)$ |
| $ = $ | $\dfrac{1}{8}\left( \text{e}^{3ix} + 3\text{e}^{ix}+3\text{e}^{-ix}+\text{e}^{-3ix}\right)$ |
| $ = $ | $\dfrac{1}{8}\left( \text{e}^{3ix} + \text{e}^{-3ix} + 3\left(\text{e}^{ix}+\text{e}^{-ix}\right) \right)$ |
| $ = $ | $\dfrac{1}{8}\left( 2\cos(3x) + 6\cos x \right)$ |
| $ = $ | $\dfrac{1}{4}\cos(3x)+\dfrac{3}{4}\cos x.$ |