-->
$|z|$ | $=$ | $\left|\dfrac{1}{z}\right|$ |
$|z|$ | $=$ | $\dfrac{1}{|z|}$ |
$|z|\times|z|$ | $=$ | $1$ |
$|z|^2$ | $=$ | $1$ |
$x^2+y^2$ | $=$ | $1$. |
$|z|$ | $=$ | $|1-z|$ | |
$|z|^2$ | $=$ | $|1-z|^2$ | |
$x^2+y^2$ | $=$ | $|1-(x+iy)|^2$ | |
$1$ | $=$ | $|1-x-iy|^2$ | D'après ce qui précède $x^2+y^2=1$. |
$1$ | $=$ | $(1-x)^2+y^2$ | |
$1$ | $=$ | $1-2x+x^2+y^2$ | |
$1$ | $=$ | $1-2x+1$ | |
$x$ | $=$ | $\dfrac{1}{2}$. |
$\dfrac{1+z}{1-z}$ | $=$ | $\dfrac{1+x+iy}{1-(x+iy)}$ | |
$=$ | $\dfrac{1+x+iy}{1-x-iy}$ | ||
$=$ | $\dfrac{1+x+iy}{1-x-iy}\times\dfrac{1-x+iy}{1-x+iy}$ | ||
$=$ | $\dfrac{1-x+iy+x-x^2+ixy+iy-ixy+i^2y}{(1-x)^2+y^2}$ | ||
$=$ | $\dfrac{1+2iy-x^2-y^2}{(1-x)^2+y^2}$ | ||
$=$ | $\dfrac{1+2iy-1}{(1-x)^2+y^2}$ | puisque $x^2+y^2=1$ | |
$=$ | $\dfrac{2iy}{(1-x)^2+y^2}$ | ||
$=$ | $i\times\dfrac{2y}{(1-x)^2+y^2}$. |
$\dfrac{1+z}{1-z}$ | $=$ | $ki$ |
$1+z$ | $=$ | $ki(1-z)$ |
$1+z$ | $=$ | $ki-kiz$ |
$z+kiz$ | $=$ | $ki-1$ |
$z(1+ki)$ | $=$ | $ki-1$ |
$z$ | $=$ | $\dfrac{-1+ki}{1+ki}$. |