-->
$A$ | $=$ | $\dfrac{1+\sqrt{2}}{2-\sqrt{2}}$ |
$=$ | $\dfrac{1+\sqrt{2}}{2-\sqrt{2}}\times\dfrac{2+\sqrt{2}}{2+\sqrt{2}}$ | |
$=$ | $\dfrac{2+\sqrt{2}+2\sqrt{2}+2}{2^2-\sqrt{2}^2}$ | |
$=$ | $\dfrac{4+3\sqrt{2}}{2}$ | |
$=$ | $\dfrac{4}{2}+\dfrac{3\sqrt{2}}{2}$ | |
$=$ | $2+\dfrac{3}{2}\sqrt{2}$. |
$v_{n+1}$ | $=$ | $60-u_{n+1}$ |
$=$ | $60-(0,95u_n+3)$ | |
$=$ | $60-0,95u_n+3$ | |
$=$ | $57-0.95u_n$ | |
$=$ | $0,95\left(\dfrac{57}{0,95}-u_n\right)$ | |
$=$ | $0,95(60-u_n)$ | |
$=$ | $0,95v_n$. |