TSTMG ~ Suites

1 Suites arithmétiques

Définition 1

nombre appelé (noté généralement), c'est-à-dire si :

Exemple 1

Pour la suite arithmétique (u_n) de premier terme $u_0=12$ et de raison 5, on a :

 $u_1 =$

Propriété 1

Si (u_n) est une suite arithmétique de 1 $^{
m er}$ terme u_0 (resp. u_1) et de raison r alors, pour tout entier n : respectivement

Exemple 2

Pour la suite (u_n) de premier terme $u_0=12$ et de raison 5, on a, pour tout entier n :

Ainsi, par exemple, $u_7 =$

Propriété 2

Soient trois termes d'une suite arithmétique (u_n) .

On a:

Exercice 1

Soit (v_n) une suite tele que $v_{10}=18$, $v_{11}=156$ et $v_{12}=298$. La suite (v_n) est-elle arithmétique ?

Correction

Remarque 1

La moyenne de deux nombres réels a et b est le nombre

Ainsi, si on considère trois termes consécutifs d'une suite arithmétique, le terme du milieu est des deux termes qui l'encadrent.

Propriété 3

La S de termes consécutifs d'une suite arithmétique est donnée par :

Remarque 2

À l'aide de cette formule on a : $1+2+3+\cdots+n=$

En effet, on additionne les n premiers termes de la suites arithmétiques de premier terme

et de raison

Exercice 2

Soit (u_n) la suite arithmétique représentant les entiers impairs positifs.

- 1. Déterminer le premier terme et la raison de cette suite.
- 2. Donner l'expression de u_n en fonction de n.
- 3. Déterminer la valeur de la somme $1+3+5+\cdots+99$.

Correction

- 1. On a : $u_0 =$ et la raison vaut
- 2. Pour tout entier n,

3.

2 Suites géométriques

Définition 2

Une suite (u_n) est dite

si chaque terme s'obtient en

le précédent par un même

nombre appelé

(noté généralement

), c'est-à-dire si :

Exemple 3

Pour la suite géométrique (u_n) de premier terme $u_0=3$ et de raison 2, on a :

$$u_1 =$$

Propriété 4

Si (u_n) est une suite géométrique de 1^{er} terme u_0 (resp. u_1) et de raison q alors, pour tout entier n : respectivement

Exemple 4

Pour la suite (u_n) de premier terme $u_0=3$ et de raison 2, on a, pour tout entier n :

Ainsi, par exemple, $u_7 =$

Propriété 5

Soient

a:

trois termes

d'une suite géométrique (u_n) . On

Exercice 3

Soit (v_n) une suite tele que $v_5=4$, $v_6=28$ et $v_7=186$. La suite (v_n) est-elle géométrique ?

Correction

Remarque 3

La de deux nombres réels a et b est le nombre

Ainsi, si on considère trois termes d'une suite géométrique, le terme du milieu est la des deux termes qui l'encadrent.

Propriété 6

La

S de termes consécutifs d'une suite géométrique de raison q, est donnée par :

- Si $q \neq 1$,
- si q = 1 :

Exercice 4

La légende rapporte que l'inventeur du jeu d'échecs demanda comme récompense à l'empereur de Chine de placer un grain de blé sur la première case d'un échiquier puis de doubler en passant d'une case à l'autre et ce jusqu'à la 64^e et dernière case.

- 1. Combien faudra-t-il de grains, en tout pour satisfaire sa demande?
- 2. Calculer, au milliard de tonnes près, le poids total de blé nécessaire sachant qu'il faut à peu près 15 grains de blé pour faire un gramme.

Correction

1. On est en présence de la suite géométrique de premier terme $u_1 =$ et de raison q =

On a:

2. Le poids total nécessaire est de :

soit à peu près mondiale actuelle.

de tonnes c'est-à-dire plus de

de production