TSTMG ~ Fonction inverse

Exercice 1

Donner l'expression de la dérivée des fonctions suivantes.

1.
$$f(x) = 2x - 4$$
.

2.
$$f_1(x) = 6 - 3x$$

$$3. g(x) = \frac{3}{x}.$$

4.
$$g_1(x) = -rac{5}{x}$$
.

5.
$$h(t) = t^2 - 16 + \frac{1}{t}$$
.

6.
$$h_1(t) = 3t^2 - 1 - \frac{4}{t}$$

7.
$$i(x) = 2x^3 - 2x^2 + 5 - \frac{2}{x}$$
.

8.
$$i_1(x) = -5x^3 - 7x^2 + 51 + \frac{20}{x}$$
.

9.
$$j(t) = \frac{1}{3}t^3 - \frac{1}{4}t^2 - \frac{4}{5t} + 1993.$$

10.
$$j_1(t) = \frac{1}{6}t^3 + \frac{1}{2}t^2 - \frac{8}{7t} + 13$$
.

11.
$$k(x) = (2x - 5)x^2 + \frac{3}{4x}$$
.

12.
$$k_2(x) = (2x - 5)^2 - \frac{31}{4x}$$
.

13.
$$m(x) = \frac{5}{2x} + (3x - 7)(4x^2 + 1) - 5x^3$$
.

14.
$$m_1(x) = -rac{3}{8x} + (3-7x)(4x+1) - rac{1}{3}x^3.$$

Exercice 2

Soit f, g, h et i quatre fonctions telles que :

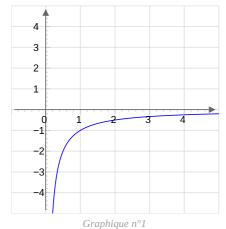
•
$$f(x)=0,5x^2$$
, pour tout $x\in\mathbb{R}$,

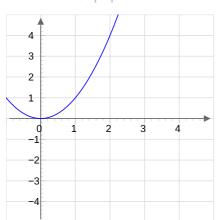
•
$$g(x)=x^2$$
, pour tout $x\in\mathbb{R}$,

•
$$h(x)=rac{2}{x}$$
, pour tout $x\in]0\,;+\infty[$,

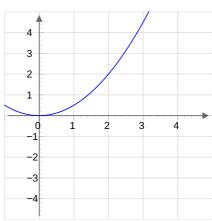
$$oldsymbol{\cdot} f(x)=0,5x^2$$
, pour tout $x\in\mathbb{R}$, $oldsymbol{\cdot} g(x)=x^2$, pour tout $x\in\mathbb{R}$, $oldsymbol{\cdot} h(x)=rac{2}{x}$, pour tout $x\in]0\,;+\infty[$, $oldsymbol{\cdot} i(x)=-rac{1}{x}$, pour tout $x\in]0\,;+\infty[$.

Les quatre courbes ci-dessous représentent chacune le graphe d'une de ces fonctions. Déterminer quel graphique correspond à quelle fonction.

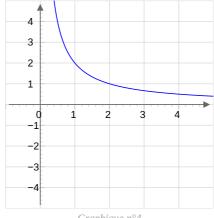




Graphique n°3



Graphique n°2



Graphique n°4

Exercice 3

Résoudre les équations et inéquations suivantes.

a.
$$\frac{2}{x} + 3 = \frac{5}{x} + 14$$

b.
$$\frac{3}{x+1} = 0$$

c.
$$\frac{2x+1}{x-3} = 0$$

d.
$$\frac{1}{x+3} = \frac{x+3}{9}$$

e.
$$\frac{1-4x}{x+7} > 0$$

$$\text{f. } \frac{1}{8x+6} \leq \frac{1}{4x-5}$$

Exercice 4

Soit f la fonction définie sur $[0\,;50]$ par $f(x)=-x^2+10x+7$.

- 1. Donner l'expression de f'(x).
- 2. Résoudre l'équation f'(x) = 0.
- 3. Compléter le tableau de variations de f sur $[0\,;50]$ donné ci-dessous :

x	0	50
f'(x)		
f(x)		

4. Donner alors la valeur maximale de f sur $[0\,;50]$.

Exercice 5

Soit f la fonction définie pour tout réel x par $f(x)=0, 1x^2-0, 2x-1, 5.$

- 1. Montrer que f(x) = 0, 1(x-5)(x+3).
- 2. Calculer f'(x).
- 3. En déduire les variations de f sur \mathbb{R} .

Exercice 6

Soit g la fonction définie sur $[1\,;20]$ par $g(x)=rac{1}{3}x^3-6x^2+20x+5.$

- 1. Déterminer pour tout $x \in [1\,;20]$ l'expression de g'(x).
- 2. Justifier que g'(x)=(x-2)(x-10).
- 3. En déduire le tableau de variations de g sur $[1\,;20]$.

Exercice 7

Soit h la fonction définie sur $[1\,;10]$ par $h(t)=4t+rac{9}{t}.$

- 1. Déterminer pour tout $t \in [1\,;10]$ l'expression de h'(t).
- 2. Justifier que $h'(t)=rac{(2t-3)(2t+3)}{t^2}$
- 3. En déduire le tableau de variations de h sur $[1\,;10]$.

Exercice 8

Une entreprise qui fabrique des microcontrôleurs estime que pour une production de x milliers de pièces son bénéfice est de

 $b(x)=0,2x-rac{50}{x}+2$ centaines de dollars. On estime que l'ensemble des usines de l'entreprise permet une production comprise entre

 $1\,000\,\text{et}\,20\,000\,\text{pièces}.$

- 1. Déterminer l'intervalle I auquel appartient x.
- 2. La fonction b est-elle croissante sur I ?
- 3. Combien de solution(s) semble posséder l'équation b(x) = 0 sur I ?
- 4. Que représente pour la fonction b le résultat afficher par l'algorithme suivant ?

```
def b(x):
    return 0.2*x-50/x+2

x0 = 1
while b(x0) < 0:
    x0 = x0+0.001
print(x0)</pre>
```

Exercice 9

La consommation d'essence C d'une voiture, aux 100 km, s'exprime en fonction de sa vitesse v par : $C(v) = 0,05v + \frac{80}{v}$, où C est en litres et v en km/h.

On suppose que la vitesse v de la voiture est comprise entre $20\,\mathrm{km/h}$ et $130\,\mathrm{km/h}$.

- 1. Calculer la dérivée C'(v).
- 2. Résoudre l'inéquation C'(v) > 0.
- 3. En déduire le tableau de variations de la fonction C.
- 4. Pour quelle vitesse v la consommation est-elle minimale ? Quelle est alors cette consommation minimale ?

Exercice 10

Partie A

Chaque semaine, une entreprise de détergent liquide estime que le coût de production (en euros) peut être modélisé par une fonction C donnée par $C(x)=x^2+60x+121$ où x est le volume de détergent produit (en m³), avec $x\in[1\,;30]$. Soit f la fonction représentant le coût moyen de production par m³ de détergent produit.

191

- 1. Montrer que pour tout $x \in [1\,;30]$, $f(x) = x + 60 + rac{121}{x}$.
- 2. a. Calculer f'(x).
 - b. Montrer que pour tout $x \in [1\,;30]$: $f'(x)=rac{(x-11)(x+11)}{x^2}$.
- 3. Le dresser le tableau de variations de f sur [1;30].
- 4. Quel est le coût moyen de production minimal ? Pour quelle quantité de détergent est-il obtenu ?

Partie B

Le détergent est vendu à 110 €/m³ et on suppose que toute la production est vendue. Le bénéfice est donné par la fonction B.

- 1. Montrer que pour tout $x \in [1;30]$: $B(x) = -x^2 + 50x 121$.
- 2. Étudier les variations de B sur $[1\,;30]$.
- 3. Quel est le bénéfice maximal ? Pour quelle quantité de détergent est-il obtenu ?

Exercice 11

Une chaîne de production fabrique des pièces de sécurité pour le transport maritime. Le coût total de production, en euros, de x boîtes fabriquées est donné par la fonction $C_T(x) = x^3 - 90x^2 + 2700x + 8836$.

- 1. Déterminer les coûts fixes.
- 2. Quel est le coût total pour une production de 10 pièces?
- 3. On appelle coût marginal la variation du coût de production pour une unité supplémentaire produite. On le note $C_m(x)$.
 - a. Justifier que $C_m(x) = C_T(x+1) C_T(x)$.
 - b. On admet que $(x+1)^3 = x^3 + 3x^2 + 3x + 1$.

Donner alors l'expression de $C_m(x)$ en fonction de x.

- c. Les économistes estiment que $C_m(x)pprox C_T'(x)$. Cette approximation est-elle justifiée ici ?
- 4. On estime dans cette question que $C_m(x) = C_T'(x)$.

Le coût moyen, que l'on note $C_M(x)$ est le coût de production d'une pièce.

a. Justifier que pour
$$x>0$$
, $C_M(x)=x^2-90x+2\,700+rac{8\,336}{x}.$

b. Déterminer, pour tout x>0, l'expression de $C_M^\prime(x)$.

c. Montrer que, pour tout
$$x>0$$
, $C_M'(x)=rac{2x^3-90x-8\,336}{x^2}$. d. Développer $(x-47)(2x^2+4x+188)$.

e. En déduire que
$$C_M'(x)=rac{(x-47)(2x^2+4x+188)}{x^2}.$$

- f. Déterminer les variations de $C_M(x)$ sur $]0\,;+\infty[$.
- g. Dans le repère ci-dessous on a tracé les courbes de C_M et C_m . Identifier chacune d'elle puis expliquer ce que représente en terme de coût l'intersection de ces deux courbes.

