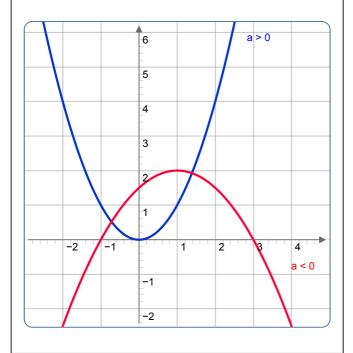
Définition / Graphique **D**

Définition

Soient a, b, c des nombres réels tels que $a \neq 0$. La fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ est appelée polnôme du second degré.

Graphique

La courbe représentative d'un polynôme du second degré dans un repère du plan est une parabole qui « pointe » vers le bas si a>0 et qui « pointe » vers le haut si a<0.



Sens de variation

Soit f un polynôme du second degré tel que pour tout $x\in\mathbb{R}, f(x)=ax^2+bx+c$, avec a,b et c trois réels, $a\neq 0$.

Sommet de la parabole

L'abscisse du sommet de la parabole représentant f dans un repère du plan est $x_0=-rac{b}{2a}.$

Sens de variation

Si a > 0:

x	$-\infty$	$-rac{b}{2a}$	$+\infty$
f(x)			₩

Si a < 0:

x	$-\infty$	$-rac{b}{2a}$	$+\infty$
f(x)	/	*	•

P Expressions algébriques **P**

 $\operatorname{Ex}:\operatorname{Soit} h$ la fonction définie $\operatorname{sur} \mathbb R$ par

$$h(x) = x^2 - 6x + 5.$$

1. Montrer que pour tout x, h(x)=(x-1)(x-5).

2. Montrer que pour tout x, $h(x) = (x-3)^2 - 4$.

Sol: 1. Pour tout réel x on a :

$$(x-1)(x-5) = x^2 - 5x - x + 5$$

= $x^2 - 6x + 5$
= $h(x)$.

2. Pour tout réel x on a :

$$(x-3)^2 - 4 = x^2 - 2 \times 3x + 3^2 - 4$$

= $x^2 - 6x + 9 - 4$
= $x^2 - 6x + 5$
= $h(x)$.

Ø Équations du second degré **Ø**

Méthode

Pour résoudre une équation du second degré, on met tous les termes dans le membre de gauche et on factorise l'expression, puis on applique la régle du produit nul.

Application

À partir de l'énoncé de la fiche précédente.

Ex: Résoudre l'équation h(x) = 0.

Sol:

$$h(x) = 0$$

$$(x-1)(x-5)=0$$

Or, un produit de facteurs est nul si et seulement si l'un des facteurs l'est :

$$\begin{aligned}
 x - 1 &= 0 \\
 x &= 1
 \end{aligned}
 \qquad x - 5 &= 0 \\
 x &= 5$$

L'équation admet donc deux solutions : 1 et 5.

Signe d'un polynôme

Méthode

Pour trouver le signe d'un polynôme on dresse son tableau de signe à partir de sa forme factorisée.

Application

À partir de l'énoncé de la fiche "Expressions algébriques".

Ex: Résoudre l'inéquation $h(x) \ge 0$.

Sol: On utilise l'expression h(x) = (x-1)(x-5).

Valeurs charnières

$$x - 1 = 0$$

$$x = 1$$

$$x - 5 = 0$$
$$x = 5$$

Tableau de signes

x	$-\infty$		1		5		$+\infty$
x-1		_	0	+		+	
x-5		_		_	0	+	
h(x)		+	0	_	0	+	

Solutions:

Les solutions de l'inéquation $h(x) \geq 0$ sont tous les nombres de :

$$]-\infty;1]\cup[5;+\infty[.$$

Maximum / Minimun

Méthode

Dans $f(x) = ax^2 + bx + c$:

- ullet Si a>0, la fonction f présente un minimum atteint en $x=-rac{b}{2a}$.
- ullet Si a<0, la fonction f présente un maximum atteint en $x=-rac{b}{2a}$.

cf. fiche "Sens de variation"

Application

 $\mathbf{E}\mathbf{x}$: Soit f la fonction définie pour tout $x\in\mathbb{R}$ par $f(x)=-2x^2+3x-7$. Déterminer la valeur maximale de f sur \mathbb{R} .

 ${f Sol}$: La fonction f est un polynôme du second de degré qui présente un maximum (-2<0), qui est atteint en

$$x = -rac{3}{2 imes (-2)} = rac{3}{4}.$$

Le maximum de f sur $\mathbb R$ est donc :

$$f\left(rac{3}{4}
ight) = -2 imes \left(rac{3}{4}
ight)^2 + 3 imes rac{3}{4} - 7 = -rac{47}{8} = -5,875.$$

Racines carrées

Propriété

Soit a un nombre réel. L'équation $x^2 = a$:

- n'admet aucune solution si a < 0.
- admet une unique solution si a=0 qui est x=0.
- admet deux solutions distinctes si a > 0:

$$x = -\sqrt{a}$$
 et $x = \sqrt{a}$.

Applications

Ex: Résoudre l'équation $x^2 = 5$.

Sol : L'équation $x^2 = 5$ admet deux solutions :

$$x = -\sqrt{5}$$
 et $x = \sqrt{5}$.

Ex: Résoudre l'équation $x^2 = -5$.

 ${f Sol}$: L'équation $x^2=-5$ n'admet aucune solution car -5<0 .

Racines cubiques

Propriété

Soit a un nombre réel. L'équation $x^3 = a$ admet exactement une solution, que l'on appelle racine cubique de a et que l'on note $\sqrt[3]{a}$.

Applications

Ex: Résoudre l'équation $x^3 = -8$.

Sol : L'équation $x^3=-8$ admet une unique solution : $x=\sqrt[3]{-8}=-2$.

Ex: Résoudre l'équation $x^3 = 5$.

Sol: L'équation $x^3=5$ admet une unique solution $x=\sqrt[3]{5}$.