$n^2-2n^3+1$ | $=$ | $n^3\left(\dfrac{n^2}{n^3}-2+\dfrac{1}{n^3} \right)$ |
$=$ | $n^3\left(\dfrac{1}{n}-2+\dfrac{1}{n^3} \right)$. |
$\dfrac{n^2+3n+1}{n+2}$ | $=$ | $\dfrac{n^2\left(1+\dfrac{3n}{n^2}+\dfrac{1}{n^2}\right)}{n\left(1+\dfrac{2}{n}\right)}$ |
$=$ | $\dfrac{n^2\left(1+\dfrac{3}{n}+\dfrac{1}{n^2}\right)}{n\left(1+\dfrac{2}{n}\right)}$ | |
$=$ | $\dfrac{n\left(1+\dfrac{3}{n}+\dfrac{1}{n^2}\right)}{1+\dfrac{2}{n}}$. |
$1,2^n-1,4^n$ | $=$ | $1,4^n\left(\dfrac{1,2^n}{1,4^n}-1 \right)$ |
$=$ | $1,4^n\left(\left(\dfrac{1,2}{1,4}\right)^n-1 \right)$ | |
$=$ | $1,4^n\left(\left(\dfrac{6}{7}\right)^n-1 \right)$. |
$n$ | $0$ | $1$ | $2$ | $3$ | $4$ |
$u_n$ |
$n$ | $0$ | $1$ | $2$ | $3$ | $4$ |
$u_n$ | $140$ | $78$ | $65,6$ | $63,12$ | $62,624$ |
$62,5$ | $\leq$ | $u_{n+1}$ | $\leq$ | $u_{n}$ | $\leq$ | $140$ | |
$f(62,5)$ | $\leq$ | $f(u_{n+1})$ | $\leq$ | $f(u_{n})$ | $\leq$ | $f(140)$ | La fonction $f$ étant strictement croissante sur $\mathbb{R}$ |
$62,5$ | $\leq$ | $u_{n+2}$ | $\leq$ | $u_{n+1}$ | $\leq$ | $78$ | car $f(u_n)=u_{n+1}$ |
$62,5$ | $\leq$ | $u_{n+2}$ | $\leq$ | $u_{n+1}$ | $\leq$ | $140$ | car $78 < 140$. |
$f(x)$ | $=$ | $x$ |
$\dfrac{1}{5}x+50$ | $=$ | $x$ |
$\dfrac{1}{5}x-x$ | $=$ | $-50$ |
$-\dfrac{4}{5}x$ | $=$ | $-50$ |
$x$ | $=$ | $50\dfrac{5}{4}$ |
$x$ | $=$ | $62,5$. |