$\cos\left( \dfrac{\pi}{2^k\times6} \right)$ | $=$ | $\cos\left( \dfrac{\pi}{2^{k+1}\times6}+\dfrac{\pi}{2^{k+1}\times6} \right)$ |
$=$ | $2\cos^2\left( \dfrac{\pi}{2^{k+1}\times6} \right)-1$. |
$\sin\left( \dfrac{\pi}{2^k\times6} \right)$ | $=$ | $2\sin\left( \dfrac{\pi}{2^{k+1}\times6}+\dfrac{\pi}{2^{k+1}\times6} \right)$ |
$=$ | $2\sin\left( \dfrac{\pi}{2^{k+1}\times6} \right)\cos\left( \dfrac{\pi}{2^{k+1}\times6} \right)$. |