$\overrightarrow{DI}$ | $=$ | $\overrightarrow{DA}+\overrightarrow{AI}$ |
$=$ | $-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AC}$ | |
$=$ | $-\overrightarrow{AD}+\dfrac{3}{4}(\overrightarrow{AB}+\overrightarrow{AD})$ | |
$=$ | $-\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}$ | |
$=$ | $\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}$. |
$\overrightarrow{HJ}$ | $=$ | $\overrightarrow{HG}+\overrightarrow{GJ}$ |
$=$ | $\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AD}$. |
$\triangleright$ Calcul formel | |
1 | Résoudre$(\{10*k-3-t=3*\ell,2 + 6*k - 6*t = 13*\ell,- 4*k + 3*t= 27*\ell\},\{k,~\ell,~t\})$
$\to \left\{\left\{k = \dfrac{675}{1814},\:\ell = \dfrac{17}{907}, \: t =\dfrac{603}{907}\right\}\right\}$ |
$V_{FBGI}$ | $=$ | $\dfrac{1}{3}\mathcal{A}_{FBG}\times IF$ |
$=$ | $\dfrac{1}{3}\times\dfrac{1}{2}FG\times FB\times IF$ | |
$=$ | $\dfrac{1}{6}\times1\times 1\times \dfrac{1}{2}$ | |
$=$ | $\dfrac{1}{12}$. |
$FL$ | $=$ | $\sqrt{(x_L-x_D)^2+(y_L-y_D)^2+(z_L-z_D)^2}$ |
$=$ | $\sqrt{\left(\dfrac{2}{3}-1\right)^2+\left(\dfrac{1}{6}-0\right)^2+\left(\dfrac{5}{6}-1\right)^2}$ | |
$=$ | $\sqrt{\left(-\dfrac{1}{3}\right)^2+\left(\dfrac{1}{6}\right)^2+\left(-\dfrac{1}{6}\right)^2}$ | |
$=$ | $\sqrt{\dfrac{1}{9}+\dfrac{1}{36}+\dfrac{1}{36}}$ | |
$=$ | $\sqrt{\dfrac{3}{18}}$ | |
$=$ | $\dfrac{\sqrt{3}}{\sqrt{18}}$ | |
$=$ | $\dfrac{\sqrt{3}}{3\sqrt{2}}$ | |
$=$ | $\dfrac{\sqrt{3}\times\sqrt{2}}{3\times2}$ | |
$=$ | $\dfrac{\sqrt{6}}{6}$. |
$\dfrac{1}{3}FL\times\mathcal{A}_{BGI}$ | $=$ | $\dfrac{1}{12}$ |
$\dfrac{1}{3}\times\dfrac{\sqrt{6}}{6}\times\mathcal{A}_{BGI}$ | $=$ | $\dfrac{1}{12}$ |
$\mathcal{A}_{BGI}$ | $=$ | $\dfrac{1}{12}\times\dfrac{18}{\sqrt{6}}$ |
$\mathcal{A}_{BGI}$ | $=$ | $\dfrac{3}{2\sqrt{6}}$ |
$\mathcal{A}_{BGI}$ | $=$ | $\dfrac{3\sqrt{6}}{2\times6}$ |
$\mathcal{A}_{BGI}$ | $=$ | $\dfrac{\sqrt{6}}{4}$. |
$\mathscr{V}_{ABCD}$ | $=$ | $\dfrac{1}{3}\mathscr{A}_{BCD}\times AH$ |
$=$ | $\dfrac{1}{3}\times\dfrac{1}{2}BC\times CD\times AH$ | |
$=$ | $\dfrac{1}{6}\sqrt{30}\times\sqrt{\dfrac{5}{4}}\times\sqrt{ 16+4+4 }$ | |
$=$ | $\dfrac{1}{6}\times\sqrt{30}\times\dfrac{\sqrt{5}}{2}\times\sqrt{ 24 }$ | |
$=$ | $\dfrac{1}{12}\times\sqrt{5}\times\sqrt{6}\times\sqrt{5}\times2\sqrt{ 6 }$ | |
$=$ | $\dfrac{1}{6}\times5\times6$ | |
$=$ | $5$. |
$AM^2$ | $=$ | $(x_M-x_A)^2+(y_M-y_A)^2+(z_M-z_A)^2$ |
$=$ | $(2+t-1)^2+(1-5t+2)^2+(3+3t-10)^2$ | |
$=$ | $(1+t)^2+(3-5t)^2+(3t-7)^2$ | |
$=$ | $1+2t+t^2+9-30t+25t^2+9t^2-42t+49$ | |
$=$ | $35t^2-70t+59$. |
$BM$ | $=$ | $\sqrt{(x_M-x_B)^2+(y_M-y_B)^2+(z_M-z_B)^2}$ |
$=$ | $\sqrt{(2+t-2)^2+(1-5t-1)^2+(3+3t-3)^2}$ | |
$=$ | $\sqrt{t^2+(-5t)^2+(3t)^2}$ | |
$=$ | $\sqrt{35t^2}$ | |
$=$ | $\sqrt{35}\times\sqrt{t^2}$ | |
$=$ | $\sqrt{35}|t|$. |
$\overrightarrow{BE}$ | $=$ | $x\overrightarrow{BC}+y\overrightarrow{BD}$ |
$\begin{pmatrix} m \\ -1 \\ 2 \end{pmatrix}$ | $=$ | $x\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}+y\begin{pmatrix} -3 \\ 1 \\ -1 \end{pmatrix}$ |
$\begin{pmatrix} m \\ -1 \\ 2 \end{pmatrix}$ | $=$ | $\begin{pmatrix} 2x \\ 0 \\ x \end{pmatrix}+\begin{pmatrix} -3y \\ y \\ -y \end{pmatrix}$ |
$\begin{pmatrix} m \\ -1 \\ 2 \end{pmatrix}$ | $=$ | $\begin{pmatrix} 2x-3y \\ y \\ x-y \end{pmatrix}$ |
$\overrightarrow{MB}\cdot\overrightarrow{MD}$ | $=$ | $0$ |
$\begin{pmatrix} x_B-x_M \\ y_B-y_M \\ z_B-z_M \end{pmatrix}\cdot\begin{pmatrix} x_D-x_M \\ y_D-y_M \\ z_D-z_M \end{pmatrix}$ | $=$ | $0$ |
$\begin{pmatrix} -4+2t \\ -2+2t \\ 3-4t \end{pmatrix}\cdot\begin{pmatrix} -7+2t \\ -1+2t \\ 2-4t \end{pmatrix}$ | $=$ | $0$ |
$(-4+2t)(-7+2t)+(-2+2t)(-1+2t)+(3-4t)(2-4t)$ | $=$ | $0$ |
$4t^2-22t+28+4t^2-6t+2+16t^2-20t+6$ | $=$ | $0$ |
$24t^2-48t+36$ | $=$ | $0$ |
$2t^2-4t+3$ | $=$ | $0$ |
$\cos\left( \overrightarrow{MB}\, , \overrightarrow{MC} \right)$ | $=$ | $\dfrac{MC}{MB}$ |
$=$ | $\dfrac{\sqrt{(x_C-x_M)^2+(y_C-y_M)^2+(y_C-y_M)^2}}{\sqrt{(x_B-x_M)^2+(y_B-y_M)^2+(y_B-y_M)^2}}$ | |
$=$ | $\dfrac{\sqrt{(6-(5+t))^2+(-2-(-2t))^2+(-5-(-6+t))^2}}{\sqrt{(1-(5+t))^2+(-2-(-2t))^2+(0-(-6+t))^2}}$ | |
$=$ | $\dfrac{\sqrt{(1-t)^2+(-2+2t)^2+(1-t)^2}}{\sqrt{(-4-t)^2+(-2+2t)^2+(6-t)^2}}$ | |
$=$ | $\dfrac{\sqrt{6t^2-12t+6}}{\sqrt{6t^2-12t+56}}$ | |
$=$ | $\sqrt{\dfrac{6t^2-12t+6}{6t^2-12t+56}}$. |
$\displaystyle{ \lim_{t\rightarrow+\infty}\dfrac{6t^2-12t+6}{6t^2-12t+56} }$ | $=$ | $\displaystyle{ \lim_{t\rightarrow+\infty}\dfrac{t^2\left(6-\frac{12}{t}+\frac{6}{t^2}\right)}{t^2\left(6-\frac{12}{t}+\frac{56}{t^2}\right) } }$ |
$=$ | $\displaystyle{ \lim_{t\rightarrow+\infty}\dfrac{6-\frac{12}{t}+\frac{6}{t^2}}{6-\frac{12}{t}+\frac{56}{t^2} } }$. |