$AC^2$ | $=$ | $(x_C-x_A)^2+(y_C-y_A)^2$ |
$=$ | $(-3-0)^2+(-1-2)^2$ | |
$=$ | $9+9$ | |
$=$ | $18$ |
$AB^2$ | $=$ | $(x_B-x_A)^2+(y_B-y_A)^2$ |
$=$ | $(2-0)^2+(0-2)^2$ | |
$=$ | $4+4$ | |
$=$ | $8$ |
$BC^2$ | $=$ | $(x_C-x_B)^2+(y_C-y_B)^2$ |
$=$ | $(-3-2)^2+(-1-0)^2$ | |
$=$ | $25+1$ | |
$=$ | $26$ |
$x_A$ | $=$ | $\dfrac{x_B+x_M}{2}$ |
$-3$ | $=$ | $\dfrac{4+x_M}{2}$ |
$-3\times2$ | $=$ | $4+x_M$ |
$-6$ | $=$ | $4+x_M$ |
$-6-4$ | $=$ | $x_M$ |
$x_M$ | $=$ | $-10$. |
$y_A$ | $=$ | $\dfrac{y_B+y_M}{2}$ |
$2$ | $=$ | $\dfrac{1+y_M}{2}$ |
$2\times2$ | $=$ | $1+y_M$ |
$4$ | $=$ | $1+y_M$ |
$4-1$ | $=$ | $y_M$ |
$y_M$ | $=$ | $3$. |
$x_A$ | $=$ | $\dfrac{x_C+x_N}{2}$ |
$-3$ | $=$ | $\dfrac{-2+x_N}{2}$ |
$-3\times2$ | $=$ | $-2+x_N$ |
$-6$ | $=$ | $-2+x_N$ |
$-6+2$ | $=$ | $x_N$ |
$x_N$ | $=$ | $-4$. |
$y_A$ | $=$ | $\dfrac{y_C+y_N}{2}$ |
$2$ | $=$ | $\dfrac{3+y_N}{2}$ |
$2\times2$ | $=$ | $3+y_N$ |
$4$ | $=$ | $3+y_N$ |
$4-3$ | $=$ | $y_N$ |
$y_N$ | $=$ | $1$. |
$OB^2$ | $=$ | $(x_B-X_O)^2+(y_B-y_O)^2$ |
$=$ | $(x_B-0)^2+(y_B-0)^2$ | |
$=$ | $x_B^2+y_B^2$ | |
$=$ | $0^2+12^2$ | |
$=$ | $144$. |