$P(X\geq1)$ | $\geq$ | $0,99$ |
$1-P(X=0)$ | $\geq$ | $0,99$ |
$1-0,964^n$ | $\geq$ | $0,99$ |
$-0,964^n$ | $\geq$ | $0,99-1$ |
$-0,964^n$ | $\geq$ | $-0,01$ |
$0,964^n$ | $\leq$ | $0,01$. |
$y$ | $=$ | $f'(1)(x-1)+f(1)$ |
$y$ | $=$ | $-2\text{e}^{-2}(x-1)+\text{e}^{-2}$. |
$g'(x)$ | $=$ | $\dfrac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}$ |
$=$ | $\dfrac{x^2+1-(x+1)2x}{(x^2+1)^2}$ | |
$=$ | $\dfrac{x^2+1-2x^2-2x}{(x^2+1)^2}$ | |
$=$ | $\dfrac{-x^2-2x+1}{(x^2+1)^2}$. |
$y$ | $=$ | $g'(1)(x-1)+g(1)$ |
$y$ | $=$ | $-\dfrac{1}{2}(x-1)+\dfrac{2}{2}$ |
$y$ | $=$ | $-\dfrac{1}{2}x+\dfrac{1}{2}+\dfrac{2}{2}$ |
$y$ | $=$ | $-\dfrac{1}{2}x+\dfrac{3}{2}$. |
$f'(x)$ | $=$ | $u'(x)v(x)+u(x)v'(x)$ |
$=$ | $2x\text{e}^{-x}+(x^2+1)\times(-\text{e}^{-x})$ | |
$=$ | $\text{e}^{-x}\left(2x-(x^2+1)\right)$ | |
$=$ | $\text{e}^{-x}\left(-x^2+2x-1\right)$ | |
$=$ | $-\text{e}^{-x}\left(x^2-2x+1\right)$ | |
$=$ | $-\text{e}^{-x}\left(x-1\right)^2$ | |
$=$ | $-\left(x-1\right)^2\text{e}^{-x}$. |