$A$ | $=$ | $10\sqrt{28}-\sqrt{175}+2\sqrt{63}$ |
$=$ | $10\sqrt{4\times7}-\sqrt{25\times7}+2\sqrt{9\times7}$ | |
$=$ | $10\sqrt{4}\times\sqrt{7}-\sqrt{25}\times\sqrt{7}+2\sqrt{9}\times\sqrt{7}$ | |
$=$ | $10\times2\sqrt{7}-5\sqrt{7}+2\times3\sqrt{7}$ | |
$=$ | $20\sqrt{7}-5\sqrt{7}+6\sqrt{7}$ | |
$=$ | $21\sqrt{7}$. |
$(2x-y)^2-(x+2y)^2$ | $=$ | $4x^2-4xy+y^2-\left( x^2+4xy+4y^2 \right)$ |
$=$ | $4x^2-4xy+y^2- x^2-4xy-4y^2$ | |
$=$ | $3x^2-8xy-3y^2$. |
$B$ | $=$ | $\left( \dfrac{\text{e}^{1\,990}\times\text{e}^{3}}{\text{e}^{1\,980}} \right)^2$ |
$=$ | $\left( \dfrac{\text{e}^{1\,990+3}}{\text{e}^{1\,980}} \right)^2$ | |
$=$ | $\left( \dfrac{\text{e}^{1\,993}}{\text{e}^{1\,980}} \right)^2$ | |
$=$ | $\left(\text{e}^{1\,993-1\,980} \right)^2$ | |
$=$ | $\left(\text{e}^{13} \right)^2$ | |
$=$ | $\text{e}^{2\times 13}$ | |
$=$ | $\text{e}^{26}$. |
$v_{n+1}$ | $=$ | $u_{n+1}-300$ |
$=$ | $0,9u_n+30-300$ | |
$=$ | $0,9u_n-270$ | |
$=$ | $0,9\left(u_n-\dfrac{270}{0,9}\right)$ | |
$=$ | $0,9\left(u_n-300\right)$ | |
$=$ | $0,9v_n$. |
$h'(x)$ | $=$ | $\dfrac{u'(x)v(x)-u(x)v'(x)}{v^2(x)}$ |
$=$ | $\dfrac{-4(2x+5)-2(1-4x)}{(2x+5)^2}$ | |
$=$ | $\dfrac{-8x-20-2+8x}{(2x+5)^2}$ | |
$=$ | $\dfrac{-22}{(2x+5)^2}$. |
Montant $m$ dépensé par le client (en €) | $10$ | $12$ | $15$ |
$P(X=m)$ | $0,187\,5$ | $\dots$ | $\dots$ |
Montant $m$ dépensé par le client (en €) | $10$ | $12$ | $15$ |
$P(X=m)$ | $0,187\,5$ | $0,712\,5$ | $0,1$ |